## 1F34

# 皮質骨の弾性・粘性係数におけるコラーゲン変性の影響

Influence of Collagen Degeneration on Elastic and Viscous Moduli of Bovine Cortical Bone

| ΤĒ | 〇張 | 月琳(北大) | 正 | 山田 | 悟史 | (北大) |
|----|----|--------|---|----|----|------|
| ΤĒ | 東藤 | 正浩(北大) | 正 | 但野 | 茂  | (北大) |

Yuelin ZHANG, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Satoshi YAMADA, Faculty of Engineering, Hokkaido University Masahiro TODOH, Faculty of Engineering, Hokkaido University Shigeru TADANO, Faculty of Engineering, Hokkaido University

Key words : Collagen Degeneration, Bovine Cortical Bone, Elastic and Viscous Moduli, Free Vibration

## 1. はじめに

長寿化に伴い, 骨粗鬆症に代表される骨疾患が急増してい る. そのため, 骨組織の力学的特性を詳細に研究することが 重要である. 特に臨床的には, 骨の健康状態と骨折のリスク を評価するために, 骨組織の弾性と粘性特性を明らかにする ことが求められている. これまで, 骨組織の材料物性に関し ては, 巨視的なレベルでは圧縮試験<sup>(1)</sup>, 引張試験<sup>(2)</sup>及び曲げ 試験<sup>(3)</sup>が行われており, 微視的なレベルではナノインデンテ ーション<sup>(4)</sup>が行われている. 以上のアプローチによって, 骨 組織の材料物性が明らかにされつつあるが, 複雑な実験機構 や測定技術が要求される. また, 動的応答に関しては, 超音 波<sup>(5)</sup>, 共振加振器<sup>(6)</sup>やインパルス加振<sup>(7)</sup>等の実験が行われ, 骨全体の固有振動数も明らかにされているが, 骨の力学特性 との関係はまだ明らかにされていない.

本研究では、片持ちばりの自由振動特性により骨組織のバ ネ定数・粘性係数を同時に計測する手法を考案する.考案し た手法を用いて、熱処理によってコラーゲンを変性させた骨 組織の弾性・粘性特性を計測し、コラーゲン変性による影響 を検討する.

## 2. 実験方法

### 2.1 試験片

約 23 か月齢のウシ大腿骨骨幹部の皮質骨より短冊状の試 験片を採取した. 試験片のサイズは, 長さ(*l*)が 15.0mm,幅(*b*) が 2.0mm および厚さ(*h*)が 1.0mm とした. 試験片の長さ方 向は大腿骨骨軸方向とした. 大腿骨の骨幹部の 4 つの部位 (anterior, medial, posterior と lateral)より 8 本ずつ試験片を採 取した.

#### 2.2 煮沸実験

皮質骨のコラーゲン変性による皮質骨の弾性・粘性特性の 影響を検討するため、100℃の蒸留水において試験片を煮沸 した.煮沸時間を12,24と36時間とした.また、ここで煮 沸せず室温の蒸留水中にて湿潤状態に保った試験片を0時 間とした.大腿骨の骨幹部の4つの部位より2本ずつ、各試 験条件において計8本の試験片を用いた.

#### 2.3 片持ちばりの自由振動試験

実験系の概要を図1に示す.試験片の一端を固定,他端を 自由にした片持ちばりとして治具に設置した.自由振動させ るために,自由端のy方向に0.20±0.02 mmの変位を与えた. 自由端のy方向の変位をレーザ変位計を用いて計測した.レ ーザ変位計のサンプリング周波数は 50kHz,変位分解能は 0.05µmとした.また,自由振動実験は,温度と湿度がそれ ぞれ 20-30℃と 30-50%の環境において,空気中で行った.



Fig.1 Outline of free vibration experiment

#### 3. 骨試験片の弾性・粘性特性の導出

骨試験片の振動特性を求めるために、図1の片持ちばりの 曲げ自由振動系を、図2に示すように自由端に質点があり、 その質点を並列なバネ・ダンパ(Kelvin-Voigt Model) によっ て垂直支持されている力学系と等価であると仮定する.この とき、実験系の固定端は単純支持とする.





図2の片持ちばりの質点-バネ・ダンパ系モデルの運動方 程式は式(1)となる.

$$J\ddot{\theta} + cl^2\dot{\theta} + kl^2\theta = 0 \tag{1}$$

ここで, *J*:慣性モーメント, *θ*:回転角, *l*:試験片の長さ, *c*: 粘性係数, *k*:バネ定数である.

慣性モーメントJは式(2)となる.

$$J = \frac{1}{3}ml^2 \tag{2}$$

ここで, m:試験片の質量である.

回転たわみ角 $\theta$ は微小の時,  $\tan \theta \cong \theta = y(t)/l$  となり,式(3)が得られる.

日本機械学会 [No.13-69] 第26回バイオエンジニアリング講演会論文集(2014.1.11-12, 仙台)

$$\frac{m}{3}\ddot{y}(t) + c\dot{y}(t) + ky(t) = 0$$
(3)

式(3)が式(1)の回転系運動方程式を垂直変位系運動方程式 に変換したことになる.ここで,式(3)の一般解を式(4)と仮 定する.

$$y(t) = y_0 e^{-At} \cos(\omega t + \varphi)$$
(4)

ここで, y<sub>0</sub>:自由端の最大振幅, A:減衰係数, ω:角振動数, φ:位相角である.

式(4)及び1階,2階微分した式を式(3)に代入すると式(5) が得られる.

$$\begin{cases} k = \frac{m}{3}(A^2 + \omega^2) \\ c = \frac{2}{3}mA \end{cases}$$
(5)

#### 4. 結果及び考察

自由振動試験で測定された片持ちばりの自由端の変位の 例を図3に示す.得られた変位を式(4)を用いて近似し,減衰 係数Aと角振動数ωを同定した.図3において,実験で計測 した変位をグレー,近似線を黒で示している.図3の結果よ り,煮沸していない試験片(図3(a))に対して,36時間煮沸し た試験片(図3(b))のほうが,角振動数が小さくなり,減衰が 大きくなったことが示され,煮沸により試験片の振動特性の 変化を測定することができたと考えられる.



(b) heating duration = 36 h

Fig.3 Examples of displacement obtained at the free end of cantilevered specimens.

式(5)を用いて,各試験片のバネ定数 k と粘性係数 c を算出 した結果を図 4 に示す.バネ定数は煮沸時間が長くなるにつ れ減少し(図 4(a)),粘性係数は増加する(図 4(b))傾向を示した.



(a) relationship between heating duration and spring constant



(b) relationship between heating duration and viscous damping coefficient

**Fig.4** Relationship of heating duration and spring constant, viscous damping coefficient measured from free vibration experiment. Error bars represent S.D..

#### 5. まとめ

本研究では、片持ちばりの自由振動特性を用いて骨組織の 弾性・粘性特性を同時に計測する手法を考案した.考案した 手法を用いて熱処理した骨組織の弾性・粘性特性を計測し、 コラーゲンの変性による影響を検討した.その結果、煮沸に よるコラーゲンの変性により弾性特性の減少、粘性係数の増 加が確認された.よって、本提案手法を用いて骨組織の粘弾 性特性を検出することが可能であることが示唆された.今後 は脱質や脱灰の試験片、並びに異なる温度での熱処理の試験 片に対して計測を行い、弾性・粘性特性への影響を検討する 予定である.

## 参考文献

- (1) Huijie Leng et al., J. Biomech., 42-4, 491-497,2009
- (2) Kotha et al., J. Biomech., 36, 1683–1689,2003
- (3) Vincent Ebacher et al., Bone, 40-5, 1265-1275, 2007
- (4) Bala et al., J. Mech. Behav. Biomed. Mater., 4-7, 1473-1482, 2011
- (5) Lee et al., Biomech. Model. Mechanobiol., 1,165-175,2002
- (6) Alizad et al., J. Biomech. Eng., 128, 300-308,2006
- (7) Christopoulou *et al.*, *J. Pharm. Biomed. Anal.*, 41, 891–897, 2006.