Short Paper

Hydroxyproline Content in the Acid-Soluble Collagen from Muscle of Several Fishes

Kenji Sato,* Reiji Yoshinaka,* and Mamoru Sato* (Received January 17, 1989)

It has been demonstrated that the texture of raw and cooked fish meat is significantly affected by the collagen content in muscle.1,2) We have proposed a simplified method for determining the collagen content in fish muscle on the basis of isolation of collagen from fish muscle.8) On the other hand, collagen content in tissues has been determined on the basis of hydroxyproline content in the hydrolyzate of tissues.2,4,5) In some cases, the same factor has been used for different species to convert the hydroxyproline content to collagen content.2,4) although the hydroxyproline content in collagen varies with fish species. 5-8) However, the data on the hydroxyproline content in the purified collagen from muscle are very confined. In this report, we describe the hydroxyproline content in the acid-soluble collagen isolated from the muscle of 22 species as listed in Table 1.

Acid-soluble collagen was prepared by the method as described previously8) and was dialyzed thoroughly against distilled water and then lyophilized. purity of collagen was checked electrophoretically by the method of Laemmli. 9) The lyophilyzed acid-soluble collagen was dried in oven at 110°C for 1 hr. The dried material was weighed and hydrolyzed with 6 N HCl at 130°C for 3.5 h. Hydroxyproline content in the hydrolyzate was determined by the method of Woessner Jr. 10)

As shown in Table 1, the hydroxyproline content in the acid-soluble collagen varied with species in the range from 4.7 to 10.0%, so that the factors for converting the hydroxyproline content to collagen content vary in the range from 10.0 to 21.3. It is obvious that the same factor can not be used for different species to estimate collagen content on the basis of hydroxyproline content.

The simplified method for determining collagen, which was reported previously,8) is based on the isolation of collagen and the determination of the isolated collagen by the method of Lowry et al..11) In some cases, it is demanded to determine collagen without the isolation of collagen. In such cases, the collagen content should be estimated on the basis of hydroxyproline content. The present study demonstrates that the hydroxyproline content in the purified collagen of each species must be determined when the collagen content is estimated on the basis of hydroxyproline content.

References

- 1) K. Sato, R. Yoshinaka, M. Sato, and Y. Shimizu: Nippon Suisan Gakkaishi, 52, 1595-1600 (1986).
- K. Hatae, A. Tobimatsu, M. Takeyama, and J. J. Matsumoto: Nippon Suisan Gakkaishi, 52, 20**01-20**07 (1986).
- K. Sato, R. Yoshinaka, M. Sato, and S. Ikeda:
- Nippon Suisan Gakkaishi, 52, 889-893 (1986). E. A. Nasedkina and T. V. Pakhomova: Rybnoe Khozyaistovo, 10, 69-70 (1972).

Table 1. Hydroxyproline content in the acidsoluble collagen from white muscle of various fish species

Species	Body weight	Hydroxypro- line*2
•	(g)	(% of collagen)
Smooth dogshark	8020	10.0
Triakis scyllia		
Carp*1	985	9.4
Cyprinus carpio	563	0.2
Spiny dogfish	563	8.3
Squalus acanthias Horse mackerel	245	8.3
Trachurus japonicus	243	0.5
Japanese eel*1	214	8.1
Anguilla japonica		
Striped mullet	678	7.9
_ Mugil cephalus		
Red stingray	5500	7.9
Dasyatis akajei	724	7.0
Red sea bream	734	7.9
Pagrus major Black scrapper	82	7.6
Thamnaconus modestus	04	7.0
Nibbler	320	7.5
Girella punctata		
Bastard halibut	433	7.5
Paralichthys olivaceus		
Sea bass	343	7.5
Lateolabrax japonicus	155	- 1
Chub mackerel	655	7.1
Scomber japonicus Pike conger	253	7.0
Muraenesox cinereus	233	7.0
Rainbow trout*1	168	6.8
Salmo gairdneri	100	0.0
Mud dab	175	6.7
Limanda yokohamae		
Argentine	100	6.7
Glossanodon semifasciatus		
Conger eel	120	6.4
Conger myriaster	252	
Devil stinger	232	6.0
Inimicus japonicus Stone flounder	305	5.9
Kareius bicoloratus	303	3.7
Sweet fish	152	4.7
Plecoglossus altivelis		
Brook masu salmon	37	4.7
Oncorhynchus masou		

- Cultured fish.
- Average of three determinations.
- M. Kubota and S. Kimura: Hikakukagaku, 21, 8**0**-85 (1975**)**.
- 504-03 (1973).
 K. Yamaguchi, J. Lavéty, and R. M. Love: J. Food Technol., 11, 389-399 (1976).
 S. Kimura, X-P. Zhu, R. Matsui, M. Shijoh, and S. Takamizawa: J. Food Sci., 53, 1315-1318 (1988).
 K. Sato, R. Yoshinaka, Y. Itoh, and M. Sato: Comp. Biochem. Physiol., 92B, 87-91 (1990).
- (1989).
- U. K. Laemmli: Nature (London), 227, 680-685 (1970).
 J. F. Woessner Jr.: Arch. Biochem. Biophys. 93,
- 10) 440-447 (1961).
- O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall: J. Biol. Chem., 193, 265-275 (1951)
- Department of Fisheries, Faculty of Agriculture, Kyoto University, Sakyo, Kyoto 606, Japan (佐藤 健司, 吉中禮二, 佐藤 守: 京都大学農学部水産学科).